Example 5.
Ill-posedness in the sense of 
Tikhonov
So far we have been dealing with extremum problems with quite unfavourable properties. In particular, there were cases where optimal controls did not exist or were nonunique. In contrast to this, the main subject of the present example is an optimal control problem that has a unique solu​tion. In some of the previous examples, the optimality conditions were not sufficient. In the present example, the optimality conditions in the form of the maximum principle are both necessary and sufficient. Another problem with the optimality conditions was that they were either unsolvable or had too many solutions. In the following example, there is a unique optimal control that satisfies the maximum condition. It may seem that no unexpected difficulties can be encountered.
Nevertheless, surprises are not over yet. We will show that in the present example it is possible to construct a sequence of admissible controls such that the values of the functional at the elements of this sequence converge to its minimum value, although the sequence itself does not converge to an optimal control. This means that finding a solution of the extremum problem with the desired accuracy is not guaranteed even under such favourable conditions.
The described situation is characteristic for optimization problems which are not well-posed in the sense of Tikhonov. In what follows, we present sufficient conditions for the problem to be well-posed. We also describe the regularization methods for ill-posed optimal control problems that allow us to overcome various difficulties in some situations.
5.1.    PROBLEM FORMULATION

Let the state of the system be described by the Cauchy problem
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 (5.1)
The control и= u(t) is assumed to belong to the set
U = { u(L2(0,1) |  | u(t) | ( 1 ,  t((0,1) } .

The optimality criterion is represented by the integral functional
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Problem 5. Find a control 
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 that minimizes the functional I on U.
Although this problem was already considered when we were studying singular controls (see Problem 2"), we will show that not all of its issues have been clarified.
5.2.    SOLUTION OF THE PROBLEM
The solvability of Problem 5 can be easily established using Theorem 5. Indeed, we already established all the necessary properties of the functional to be minimized and the set of admissible controls during the analysis of similar problems. Taking into account the strict convexity of the functional, which can be proved the same way as in Problem 0 (see Example 1). We can also establish the uniqueness of the optimal control using Theorem 2. Besides, similar results can be obtained by analyzing the optimality conditions.
We showed in Example 2 that the maximum principle for Problem 5 is defined by the formula
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 (5.2)
where p is a solution of the problem
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 (5.3)
As we know, the system of optimality conditions (5.1)-(5.3) does not have nonsingular solutions. The maximum principle can only hold if it is degenerate, which corresponds to the case p=0. From (5.3) it follows that x=0. Finally, using (5.1), we find the unique solution of the maximum principle — the singular control u0 = 0.
Conclusion 5.1. The maximum principle for Problem 5 has a unique solution — the singular control u0.
At the same time, the functional to be minimized is nonnegative. It vanishes only for x=0, i.e., at the control u0. We thus obtain very positive results.
Conclusion 5.2. Problem 5 has a unique solution u0.
Conclusion 5.3. The maximum principle for Problem 5 is a necessary and sufficient; optimality condition.
Remark 5.1. The sufficiency of the maximum principle can be estab​lished directly by applying Theorem 3, as was done in Example 1.
It may seem that there is no reason to return to such a simple problem that has been analyzed sufficiently well. However, we will show that this problem has more surprises than we expect.
Remark 5.2. The existence of a singular control is already an important sign of upcoming difficulties.
5.3.    ILL-POSEDNESS IN THE SENSE OF TIKHONOV

Consider the sequence of controls defined by the following formulas (see Figure 26):
uk(t)  =  sin kt ,  k = 1,2, …  . 

 (5.4)
These functions are infinitely differentiable and are not greater than unity in absolute value. Hence, these controls are admissible.
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Figure 26. The minimizing sequence in Problem 5.

The corresponding solutions of problem (5.1) are defined as follows (see Figure 27):
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(5.5)
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Figure 27. The sequence of states defined by formula (5.5)
The following estimate holds:
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Hence,
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Then the sequence of functional corresponding to the controls uk tends to zero, i.e., the minimum value of the optimality criterion on the set of admissible controls.
Conclusion 5.4. The sequence {uk} in Problem 5 is minimizing.
Under these conditions, it may seem natural to take a function uk for sufficiently large k as an approximation of the optimal control. The question arises of whether the minimizing sequence {uk} converges to the optimal control u0. If this is true, the norm of the difference (uk-u0) must tend to zero. We now estimate this norm:
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Thus, the optimal control u0 is not the limit of the minimizing sequence {uk}.
Conclusion 5.5. The minimizing sequence {uk} does not converge to the optimal control.

Remark 5.3. The above conclusion is rather obvious. It suffices to compare the elements uk (sinusoids with indefinitely increasing oscillation frequency) with the optimal control identically equal to zero. See Figure 26.
The sequence {uk} does not converge in any conventional functional space. This is not surprising since we already encountered the same problem with nonconvergent minimizing sequence in two previous examples. How​ever, there was no optimal control in those examples, i.e., there was no possible limit for the minimizing sequence. Since the existence of an op​timal control in the present example is obvious, we arrive at the following unfortunate conclusion.
Conclusion 5.6. Not every minimizing sequence converges to the opti​mal control in the present example.
Summing up these results, we can subdivide all optimal control problems into two classes. The problem of optimal control is called well-posed in the sense of Tikhonov if every minimizing sequence for this problem converges to the optimal control. If there exits a minimizing sequence that does not converge to the optimal control, then the problem is called ill-posed in the sense of Tikhonov.
Conclusion 5.7. Problem 5 is ill-posed in the sense of Tikhonov,
Thus, even though there is a unique optimal control and the optimality conditions are necessary and sufficient, easy solution is not guaranteed. In ill-posed problems, even if we are able to find a control at which the value of the functional being minimized is as close to its lower bound as desired, this control is not guaranteed to be close enough to the optimal control.
Remark 5.4. The minimizing sequence defined above weakly converges to the optimal control. For this reason, the problem could be called weakly well-posed in the sense of Tikhonov. However, this positive result is not re​ally meaningful because the elements of the minimizing sequence (frequently oscillating functions) are by no means close to the optimal control, which is constant.
Remark 5.5. Note that the weak convergence of the minimizing se​quence is of no surprise. The Banach—Alaoglu theorem is still applicable here since the set of admissible controls is bounded.

We now try to explain why the problem in question is not well-posed in the sense of Tikhonov. Apparently, in problems of this kind, the functional is not very sensitive to the variations of the control. Under this condition, a substantial variation of the control has only a weak effect on the optimality criterion. Therefore, the value of the functional at a control considerably different from the optimal one may be relatively close to its minimum value.
Conclusion 5.8. The problem is ill-posed in the sense of Tikhonov because the optimality criterion is not sensitive enough to the variation of the control.
The question arises of whether the fact that the problem is not well-posed in the sense of Tikhonov is a really serious obstacle. In applied problems, we always seek approximate solutions. Therefore, it may be reasonable to always seek the approximate solution in the form of an admissible control at which the value of the functional is sufficiently close to its lower bound. With such an approach, the fact that a certain problem is not well-posed seems to be of no concern.
Suppose that we have a situation where the present example has physical meaning. As we know, the exact optimal control is the function identically equal to zero, which is very simple and has no problem being represented in practice. At the same time, when we seek an approximate solution, it turns out to be a sinusoid with high frequency of oscillations. Although the corresponding value of the functional is sufficiently small, the obtained con​trol is not satisfactory as far as practical application is concerned. For this reason, determining optimal controls with the required accuracy is a more preferable way, though finding the approximate minimum of the functional may also be satisfactory enough in some cases.
Remark 5.6. If a problem is ill-posed in the sense of Tikhonov, numer​ical algorithms are usually very sensitive to different kinds of errors. This brings up the notion of ill-posedness in the sense of Hadamard, which is the subject of the next example.
The question arises of whether a minimizing sequence that does not con​verge to the optimal control may converge to any other limit. If the functional is continuous, the convergence of a sequence of controls obviously implies the convergence of the corresponding sequence of the functional values. So if the sequence of controls converges to a limit which is not an optimal control, then the corresponding sequence of the functional values will converge to the value of the functional at this limit. In this case, however, the sequence is not minimizing since the values of the functional at this sequence do not converge to its lower bound.
Conclusion 5.9. The minimizing sequence either converges to the op​timal control or does not converge at all.
It is interesting to know how common is the case where the minimizing sequence in an ill-posed problem does not converge. In the present example, it is easy to see every sequence of admissible controls that weakly converges to zero is minimizing. Since the class of weakly converging sequences is substantially larger than that of strongly converging sequences, we conclude that minimizing sequences usually do not converge in problems that are ill-posed in the sense of Tikhonov.
Conclusion 5.10. Minimizing sequences in ill-posed problems usually do not converge.
In unsolvable optimization problems, minimizing sequences obviously do not converge to optimal controls since they don't exist.
Conclusion 5.11. Unsolvable optimization problems are ill-posed in the sense of Tikhonov.
This brings up the question: Is it possible for an optimal control prob​lem with more than one solution to be well-posed in the sense of Tikhonov? Consider the case where the optimal control problem has two different so​lutions и and v. Let {uk} and {vk} be sequences of admissible controls converging to u and v, respectively. If the functional I to be minimized is continuous, we have
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Let {wk} be a sequence whose elements with odd indices are the elements of {uk} and those with even indices are the elements of {vk}.  We have I(wk)(inf I(U)because the same is true for all subsequences of {I(wk)}. Hence, {wk} is a minimizing sequence. At the same time, it does not con​verge because two of its subsequences converge to different limits. It follows that this problem is ill-posed in the sense of Tikhonov.
Conclusion 5.12. Optimization problems with more than one solution are ill-posed in the sense of Tikhonov.
We see that the class of optimal control problems well-posed in the sense of Tikhonov is smaller than the class of problems that have a unique solution.

In particular, Problem 5 is uniquely solvable, but it is ill-posed in the sense of Tikhonov. For this reason, in order to prove that a problem is well-posed, the restrictions to be imposed on the system must be stronger than those we had when establishing the existence and uniqueness of an optimal control. In what follows, we find the conditions that guarantee the well-posedness of the optimal control problem in the sense of Tikhonov.
5.4.    ANALYSIS OF WELL-POSEDNESS 
IN THE SENSE OF TIKHONOV
In the proof of the solvability of the extremum problem, we have used the convexity of the functional to be minimized. To provide the uniqueness of the optimal control, we needed the stronger property of strict convexity. To establish that the optimal control problem is well-posed in the sense of Tikhonov, we need an even stronger condition — the strict uniform convexity of the functional.
A functional I defined on a convex set U is called strictly uniformly convex if there exists a continuous function δ=δ(τ) such that
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and for every two elements u,v
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[0,1] the following inequality elements holds:
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Obviously, every strictly uniformly convex functional is strictly convex.
Suppose that a function и is a solution of the problem of minimizing a strictly uniformly convex functional I on a convex set U. Consider an arbitrary minimizing sequence, i.e., a sequence of uk
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U such that I(uk)( inf I(U). Then
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and therefore
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Since the control и is optimal, the left-hand side of the foregoing inequality is nonnegative. As a result, we have
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We now pass to the limit as α→0 since the parameter α is arbitrary. This yields the inequality
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Since {uk} is a minimizing sequence, we have
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Assume that the sequence of positive numbers {τk}, where 
[image: image25.wmf]||

||

u

u

k

k

-

=

t

, does not tend to zero. This means that it either does not converge or tends to a positive number. From the properties of the function δ, it follows that {δ(τk)} either converges to a nonzero limit or does not converge at all. In any case, it does not converge to zero, which leads to a contradiction. We have thus proved that uk(u. Therefore, every minimizing sequence converges to the optimal control, which means that this extremum problem is well-posed in the sense of Tikhonov.
Conclusion 5.13. The strict uniform convexity of the functional is required to prove that the optimization problem is well-posed in the sense of Tikhonov.
Taking into account Theorems 5 and 7 on the existence of a solution of the extremum problem, we arrive at the following conclusion.
Theorem 8. The problem of minimizing a lower semicontinuous functional which is bounded from below and is strictly uniformly convex on a convex closed bounded subset of a Hilbert space is well-posed in the sense of Tikhonov. (The condition of boundedness for the subset can be replaced with the coerciveness of the functional.)
This theorem will be used below to prove that the problem considered in Introduction is well-posed in the sense of Tikhonov.
5.5.    THE WELL-POSED OPTIMIZATION PROBLEM
Let the set
U = { u ( L2(0,1) |  | u(t) | ( 1,  t((0,1) } .
be the domain of definition for the functional
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The system state x is described by the formulas
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Problem 5'. Find a control 
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 minimizing the functional I on U.
We are dealing with Problem 0, for which the existence and uniqueness of an optimal control was established earlier. All the assumptions of Theo​rem 8, except for the property of strict uniform convexity of the functional, were proved to hold.
In order to establish that the functional is strictly uniformly convex, we first consider the quadratic function
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We have  
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for all 
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It follows that f is strictly uniformly convex and 
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Setting x = u(t) and у = v(t)  integrating the foregoing equality with respect to t, we obtain
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Hence, the quadratic functional I defined by the formula
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is strictly uniformly convex, i.e.,
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We already established the convexity of the functional
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(see Example 1), where x(u) is a solution of the Cauchy problem corre​sponding to the control u. Taking into account that I is the half sum of the functional J and K, we have
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Conclusion 5.14. The functional I is strictly uniformly convex.
By Theorem 8, the problem is well-posed in the sense of Tikhonov.
Conclusion 5.15. Problem 5’ is well-posed in the sense of Tikhonov.
In Problem 5, the functional to be minimized is strictly convex, but not strictly uniformly convex. Although this is enough to establish the uniqueness of the optimal control it is not enough for the problem to be well-posed.
Conclusion 5.16. Problem 5 is not well-posed in the sense of Tikhonov because the functional to be minimized is not strictly uniformly convex.
5.6.    REGULARIZATION OF 
OPTIMAL CONTROL PROBLEMS
Numeric solution of ill-posed extremum problems may involve certain difficulties. In particular, minimization algorithms do not necessarily guarantee the obtaining of optimal controls with the desired accuracy. Various regularization methods can help to deal with these problems. For example, the Tikhonov regularization method for Problem 5 involves the use of the functional
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where ε is the regularization parameter.
The problem of minimizing this functional coincides with Problem 0 up to a constant multiplier. As Problem 0 was proved to be well-posed, the solution of the regularized problem should not be difficult. After finding a solution we, we pass to the limit as 
[image: image40.wmf]0
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. The initial calculations are made for sufficiently large ε, when the problem has good properties (numerical algorithms for this problem converge sufficiently well), although they are not as good as in Problem 5. The next stage of calculations is performed after ε is reduced, the initial approximation being the control from the previous step of the regularization method. The deterioration of convergence of the solution algorithm as the problem is becoming closer to the original ill-posed problem is partially compensated by the gradual refinement of the initial approximation of the control at every step of the regularization method. It is sometimes possible to solve the ill-posed problem using this algorithm.
Remark 5.7. The algorithm described above involves an imbedded iterative process.
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